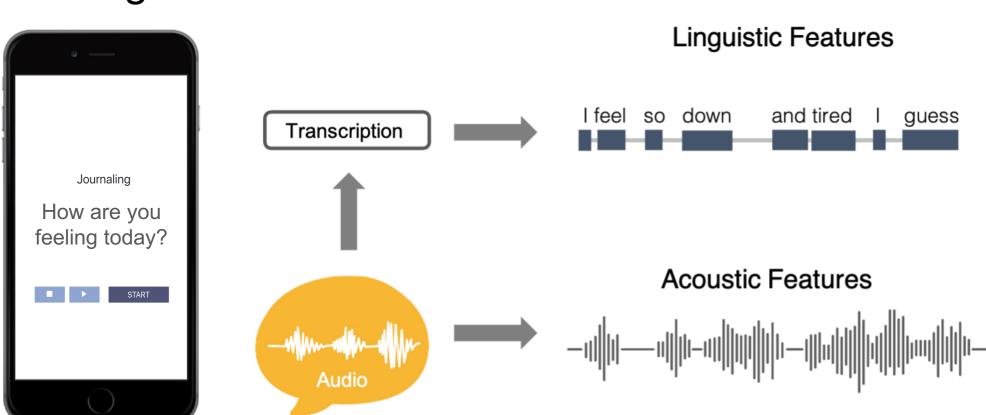


McMaster

University

Do motor symptoms and antipsychotic medications influence the digital speech assessment of negative symptoms in schizophrenia spectrum disorders?


¹Winterlight Labs, Toronto, ON, Canada. ²Institute of Behavioral Science, Feinstein Institutes for Medical Research, Northwell Health, Glen Oaks, New York, USA. ³Zucker Hillside Hospital, Northwell Health, Glen Oaks, New York, USA. ⁴McMaster University, Hamilton, ON, Canada.

Background

- Computational speech analysis may help provide a quantitative assessment of negative symptoms in schizophrenia and overcome limitations of traditional symptom scales.
- However, the influence of potential confounding clinical variables (e.g., comorbid motor symptoms) has not yet been systematically ruled out, which is necessary for the clinical validation of computational speech metrics.
- This study examined whether motor symptoms and antipsychotic medication were associated with speech markers of negative symptoms in participants with schizophrenia spectrum disorders (SSD).

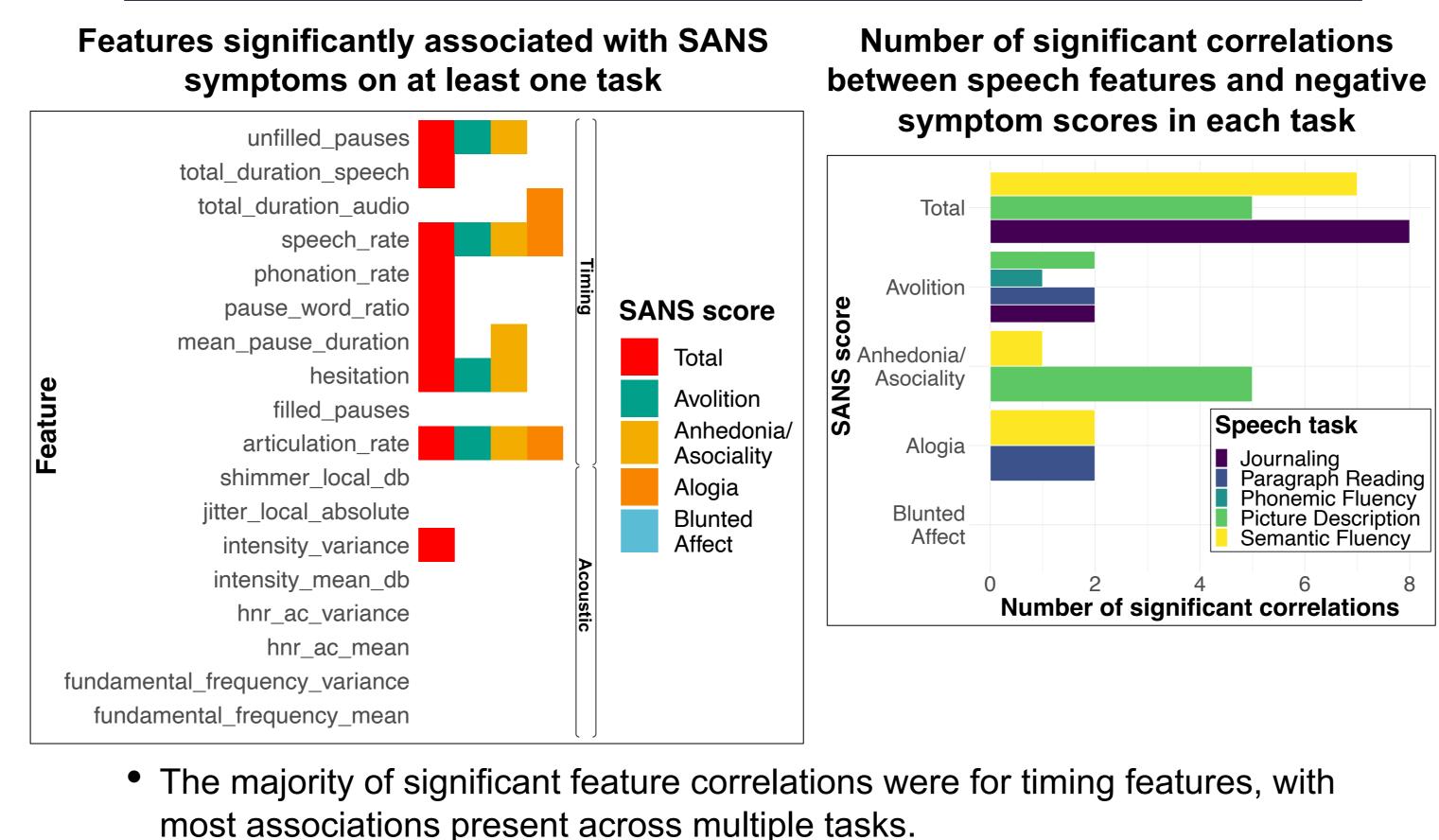
Methods

- **Participants:** 43 inpatients with SSD
- Clinical Assessments: Negative symptoms (Scale for the Assessment of Negative Symptoms; SANS); motor symptoms (Extrapyramidal Symptom Rating Scale; ESRS).
- Speech tasks (from the Winterlight assessment app): Journaling (x2), Picture Description (x3), Phonemic Fluency, Semantic Fluency, Paragraph Reading.
- Quantitative speech features: 8 acoustic and 10 timing variables extracted for each participant from transcribed speech recordings.

- Analyses: Associations (age- and sex-adjusted partial Kendall rank correlations) were evaluated between quantitative speech features and the following: negative symptoms (SANS), motor symptoms (ESRS global impression scores), and antipsychotic medication dose (chlorpromazine equivalent; CPZE).
- Statistical significance: set at p < .05, FDR-corrected within task.
- Bayesian analyses were used to further evaluate evidence for the absence of associations between speech and motor symptoms or antipsychotic medication dose.

Michael J. Spilka¹, Jessica Robin¹, Amir Nikzad^{2,3}, Leily Behbehani², Sarah Berretta², Mengdan Xu¹, William Simpson^{1,4}, & Sunny X. Tang^{2,3}

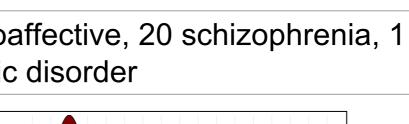
Participant characteristics

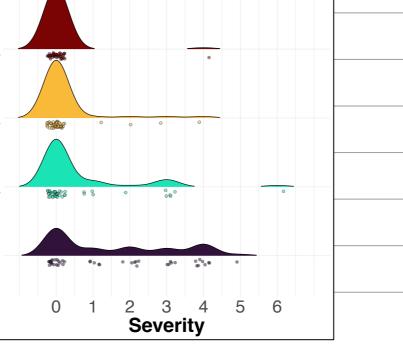

Age (years)	26.16 (5.08)				
Sex	14 female, 29 male				
Race/Ethnicity	21% Asian, 47% Black, 16% Wh	nite-not His			
Education (years)	14.19 (1.97)				
Diagnosis	3 bipolar disorder w/ psychosis, schizophreniform, 8 unspecified				
BPRS Total	48.47 (11.58)	Ó			
SANS Total	26.58 (9.98)	eros Dyskinesia			
ESRS Parkinsonism	1.53 (1.67)	ssion			
ESRS Akathisia	0.56 (1.26)	Dystonia			
ESRS Dystonia	0.23 (0.81)				
ESRS Dyskinesia	0.09 (0.61)	Akathisia OD OS			
CPZE dose	289.66 (220.54)	Parkinsonism			
Note Means and standard	deviations are reported where relevant				

eans and standard deviations are reported where relevant

Highlights

Quantitative speech features are sensitive to negative symptom severity in schizophrenia spectrum disorders and do not appear to be confounded by motor symptoms or antipsychotic medications.


Results: Speech and negative symptoms



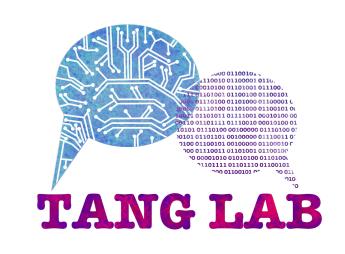
most associations present across multiple tasks. • Association strength was in the small-to-medium range for positive (Kendall's tau = 0.21 to 0.31) and negative (Kendall's tau = -0.37 to -0.20) correlations.

Presented at the 2023 Congress of the Schizophrenia International Research Society

Results: Speech, motor sx, and antipsychotics

- No significant correlations between speech features and parkinsonism, akathisia, or CPZE dose after FDR correction.
- Bayesian analyses indicated no more than anecdotal support for the alternative hypothesis for all but one feature: mean fundamental frequency (with akathisia; moderate support; $BF_{10} =$ 3.56), which was not associated with negative symptoms.
- Bayes factors otherwise indicated moderate support ($BF_{01} > 3$) for the absence of an association between speech and motor symptoms or CPZE dose for most features.

Bayesian tests for correlations with relevant speech features


Feature	ESRS Akathisia		ESRS Parkinsonism		CPZE dose	
Unfilled pauses ^a (picture description)	BF ₁₀ = 0.2 BF ₀₁ = 5.01	data H1	BF ₁₀ = 0.205 BF ₀₁ = 4.876	data I H1 data I H0	BF ₁₀ = 0.291 BF ₀₁ = 3.434	data I H1
Total duration speech ^a (semantic fluency)	BF ₁₀ = 0.407 BF ₀₁ = 2.456	data H1 data H0	BF ₁₀ = 0.201 BF ₀₁ = 4.979	data I H1 data I H0	BF ₁₀ = 0.162 BF ₀₁ = 6.154	data I H1 data I H1 data I H0
Total duration audio ^a (paragraph reading)	BF ₁₀ = 0.459 BF ₀₁ = 2.176	data H1	BF ₁₀ = 0.272 BF ₀₁ = 3.676	data I H1 data I H0	BF ₁₀ = 0.268 BF ₀₁ = 3.737	data I H1 data I H0
Speech rate (semantic fluency)	BF ₁₀ = 0.234 BF ₀₁ = 4.273	data I H1 Odata I H0	BF ₁₀ = 0.21 BF ₀₁ = 4.76	data I H1 data I H0	BF ₁₀ = 0.335 BF ₀₁ = 2.988	data I H1 Odata I H0
Phonation rate ^a (semantic fluency)	BF ₁₀ = 0.407 BF ₀₁ = 2.456	data H1 data H0	BF ₁₀ = 0.201 BF ₀₁ = 4.979	data I H1 data I H0	BF ₁₀ = 0.162 BF ₀₁ = 6.154	data I H1 data I H0
Pause word ratio (journaling)	BF ₁₀ = 0.206 BF ₀₁ = 4.856	data I H1 data I H0	BF ₁₀ = 0.206 BF ₀₁ = 4.856	data I H1 data I H0	BF ₁₀ = 0.177 BF ₀₁ = 5.648	data I H1
Mean pause duration ^a (journaling)	BF ₁₀ = 0.562 BF ₀₁ = 1.778	data H1	BF ₁₀ = 0.684 BF ₀₁ = 1.462	data I H1 Odata I H0	BF ₁₀ = 0.307 BF ₀₁ = 3.255	data I H1
Hesitation ^a (semantic fluency)	BF ₁₀ = 0.338 BF ₀₁ = 2.96	data H1 data H0	BF ₁₀ = 1.86 BF ₀₁ = 0.538	data I H1 data I H0	BF ₁₀ = 0.264 BF ₀₁ = 3.787	data I H1
Articulation rate ^a (picture description)	BF ₁₀ = 0.198 BF ₀₁ = 5.06	data I H1 data I H0	BF ₁₀ = 0.198 BF ₀₁ = 5.06	data I H1 data I H0	BF ₁₀ = 0.161 BF ₀₁ = 6.22	data I H1 data I H0
Intensity variance (semantic fluency)	BF ₁₀ = 0.303 BF ₀₁ = 3.3	data I H1 Odata I H0	BF ₁₀ = 0.203 BF ₀₁ = 4.93	data I H1 data I H0	BF ₁₀ = 0.173 BF ₀₁ = 5.793	data I H1 data I H0

Note. Bayesian tests are reported for speech from the task demonstrating the strongest association with SANS Total score (or subscore when the correlation with Total score was not significant). BF_{01} = Bayes factor for the null hypothesis; BF_{10} = Bayes factor for the alternative hypothesis. Bayes Factor (BF) interpretation: 1-3 = anecdotal support; 3-10 = moderate support; > 10 = strong support. ^aFeatures that showed a significant (pFDR < .05) correlation with negative symptoms and a significant (uncorrected p < .05) correlation with motor symptoms or CPZE dose.

Conclusions

- Speech features are sensitive to negative symptom severity in SSD and do not appear to be confounded by motor symptoms or antipsychotic dose.
- Additional research in samples with more severe motor symptoms and that examines other factors influencing speech (e.g., culture) will help to further validate computational speech-based assessment of negative symptoms.

