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Abstract—Depression is the most common psychological dis-
order and is considered as a leading cause of disability and
suicide worldwide. An automated system capable of detecting
signs of depression in human speech can contribute to ensuring
timely and effective mental health care for individuals suffering
from the disorder. Developing such automated system requires
accurate machine learning models, capable of capturing signs
of depression. However, state-of-the-art models based on deep
acoustic representations require abundant data, meticulous se-
lection of features, and rigorous training; the procedure involves
enormous computational resources. In this work, we explore
the effectiveness of two different acoustic feature groups -
conventional hand-curated and deep representation features, for
predicting the severity of depression from speech. We explore
the relevance of possible contributing factors to the models’
performance, including gender of the individual, severity of the
disorder, content and length of speech. Our findings suggest that
models trained on conventional acoustic features perform equally
well or better than the ones trained on deep representation
features at significantly lower computational cost, irrespective
of other factors, e.g. content and length of speech, gender of the
speaker and severity of the disorder. This makes such models
a better fit for deployment where availability of computational
resources is restricted, such as real time depression monitoring
applications in smart devices.

Index Terms—Neural network, support vector machine, acous-
tical analysis, mental health

I. INTRODUCTION

Depression is a common psychological disorder. About 264
million people worldwide suffer from depression, which is
almost 5% of the world’s total population [1]. Only about 50%
of the people experiencing major depression receive treatment.
Due to lack of continuous monitoring and timely support,
depression causes one death every 40 seconds, resulting in
800,000 deaths by suicide worldwide every year [1].

Conventional depression diagnostic systems, such as clini-
cal assessment or standard questionnaires, require significant
amount of time and active participation of the depressed
individuals. Studies reveal that depression is reflected in
behavioral fluctuations of certain day-to-day activities and
physical parameters [2]. These findings have accelerated inter-
ventions in depression recognition using predictive models that
incorporate input data of different modalities, among which
audiovisual is one of the most explored areas. In this work,
we emphasize on audio modality for its manifold benefits.
Audio based depression detection system offers better privacy

for users of remote monitoring system. This kind of automated
assessment takes only a few minutes of audio recording,
therefore is less time-consuming, and would reduce burden
on the individuals.

Multiple research efforts aim to develop a system that
detects depression by analyzing the fluctuation of acoustic
features in human speech ( [3], [4]). An ML model that detects
evidences of depression from audio data is a prerequisite for
such a system. Existing best performing ML models that
detect mental and cognitive diseases from audio data use
either deep representation acoustic features, or a combination
of conventional hand-crafted and deep features [5]. Although
deep representation features offer a unified process of feature
extraction, feature selection and model training, extracting
and processing these features demands enormous computation
resources including memory and processing time. This makes
such models inconvenient for many real-world applications,
where speed of data processing, model training and infer-
ence are of crucial importance [6]. Therefore, researchers
and system designers need to make a choice of features
when developing and deploying the model, considering both
performance and cost. Some previous research compare the
two approaches in the domain of cognitive disease detection
[7] but to the best of our knowledge, no such research has
been done so far in the domain of depression. To address
this gap, in this work we have experimented with both hand-
crafted conventional acoustic features and deep representation
acoustic features. We address the following research questions:

1) Between conventional and deep representation acoustic
features, which ones are more effective in determining
depression severity in terms of accuracy and computa-
tional cost?

2) Does the machine learning (ML) model performance
vary based on gender of the subject?

3) What is the effect of content and length of speech data
in predicting depression from speech?

Answers to these questions enables the research community
as well as system designers in making informed choice of
modality, features, algorithm that suits best to the context, e.g.
target user group and affordability. In this work, we compare
performance of the ML models trained on each type of features
extracted from speech samples of a variety of content and
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length. Our key findings suggest that:

1) ML model trained on conventional acoustic feature set
curated using expert domain knowledge demonstrates
competitive performance as state-of-the-art models in
predicting depression severity, irrespective of length and
content of speech, and gender of the speaker

2) Usage of deep representation features resulted in
marginal improvement of performance (0.0004%) con-
suming 1000 times more memory and 3000 times more
computation time.

As such, we claim that models predicting depression from hu-
man speech that are trained on conventional acoustic features
are a better choice than the models trained on deep acoustic
representations in the situations when computational resources
are limited, e.g. in mental healthcare applications for portable
or wearable devices. On the other hand, deep representation
models fit better to the scenarios where abundant training
data is available, for example social media, and computational
resources is a legitimate trade-off for better performance.

II. RELATED WORKS

Individuals suffering from psychological and neurological
disorders like depression exhibit measurable fluctuation in
vocal parameters ( [8] and [9]). Significant number of research
have been conducted to relate these parameters with depression
severity. DAIC-WoZ dataset [10] is a widely used dataset in
acoustic based depression severity prediction, consisting of
structured interviews of participants conducted by a virtual
agent. Two subsets of this dataset have been introduced as the
challenge corpus of three Audio/Visual Emotion Challenges
(AVEC) in 2016 [11], 2017 [12] and 2019 [13], where partic-
ipants proposed machine learning models to predict depression
score on the PHQ-8 scale [14]. Handcrafted acoustic features
have been exploited for this task for the last few decades, while
deep representation of acoustic features have become popular
in recent years. Further, we present a summary of existing
works in this area and compare them based on the type of
acoustic features.

A. Conventional Acoustic Features

Conventional acoustic features fall in temporal, spectral,
energy and voicing related categories, from which researchers
hand-pick the ones that are most suitable for predicting certain
disorders, such as depression [9]. Over the time, certain sets
of these acoustic features, introduced in speech emotion and
depression recognition challenges, have gained popularity,
among which baseline feature sets of AVEC 2013 [15] and
AVEC 2016 [11], INTERSPEECH ComParE [16], extended
Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) [17]
are noteworthy. Development of feature extraction toolkits
like openSMILE [18], COVAREP [19] has made it easier for
researchers to extract these features for the purpose of speech
analysis in different aspects.

B. Deep Representation Features

Deep representation of acoustic features are inspired by
the deep learning paradigms common in image processing.
Here, spectral images of speech instances are fed into pre-
trained image recognition CNNs and a set of the resulting
activations are extracted as feature vectors. In AVEC 2019
Depression Detection Sub-challenge (DSC), Deep representa-
tion features from four robust pre-trained CNNs using VGG-
16 [20], AlexNet [21], DenseNet-121, and DenseNet-201
[22] were included as challenge baseline features. Participants
chose between using one or more sets of deep representation
features ( [23], [24]), and combining them with traditional
features [5] and obtained competitive performances (Table
III). Deep representation provides the option to unite fea-
ture extraction, feature selection and model training into a
single automated generalisable procedure, compromising the
opportunity to incorporate expert domain knowledge, and
necessitating considerably higher computational cost.

C. Depression Detection Models

AVEC 2016 challenge dataset was used in analysis pre-
sented in [25], [26], [27], [28], [29], [30], [31], [32] and [33].
Williamson et al. extracted formants, MFCCs, glottal features,
loudness [25]. In addition to COVAREP [19] audio features,
[26] took text topics into account, while [27] considered
a more extended set of features of audio, video and text
modalities. [29] added Delta and Delta-Delta coefficients,
mean, median, standard deviation, peak-magnitude to RMS
ratio to the set of challenge baseline audio features. Applying
similar higher-order statistics on the baseline features, [30]
constructed an extended feature set of 553 features, of which
they identified 279 features with statistically significant uni-
variate correlation. [31] implemented multi-modal sentence-
level embedding on log-Mel spectrogram and MFCC fea-
tures. In their recent work, [34] exploited a combination of
eGeMAPS and INTERSPEECH features extracted from the
longest ten segments of each audio sample. They reshape the
feature vector in an image-like 2D feature map in row-major
order and adopted Deep Convolutional Generative Adversarial
Net (DCGAN) for feature vector generation. [33] trained
three spectrogram-based Deep Neural Network architectures
phoneme consonant and vowel units and their fusion. Their
findings suggest that deep learned consonant-based acoustic
characteristics lead to better recognition results than vowel-
based ones, and the fusion of vowel and consonant speech
characteristics outperforms the other models on the task. [32]
described a transfer attention mechanisms from speech recog-
nition to aid depression severity measurement. The transfer is
applied in a two-level hierarchical network which reflecting
the natural hierarchical structure of speech.

The AVEC 2016 challenge corpus included training, de-
velopment and test partitions of audio samples. Using acous-
tic features exclusively, the lowest root-mean-square-error
(RMSE) of 5.52 and 6.42 on the development and test set were
reported in [35] and [36] respectively. RMSE 4.99, 5.40, 5.66
and 6.42 were reported in [27], [35], [32] and [36] respectively
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on the test set. The challenge baseline RMSE 6.74 (mean
absolute error (MAE) 5.36) and 7.78 (MAE 5.72) were set
for the development and test set respectively [12].

Comparatively, fewer number of studies have been con-
ducted on the recently published AVEC 2019 DDS dataset;
which is a super-set of the AVEC 2016 dataset. A wide
range of audio features has been provided as the challenge
baseline encompassing both handcrafted sets of conventional
features and deep representation of acoustic features, including
eGeMAPS, Mel Frequency Cepstral Coefficients (MFCCs),
Bag of Audio Words (BoAW) and two sets of deep spectrum
features by feeding spectral images of speech instances into
pre-trained image recognition Convolutional Neural Networks
(CNN) (VGG-16 [22] and DenseNet-121 [20]) and extracting
the resulting activations as feature vectors. Of these, deep
spectrum features were used by [24] and [23], and MFCCs
and eGeMAPS by [37]. [5] exploited all the baseline feature
sets, while [38] extracted the AVEC 2017 baseline feature set
[12] using the COVAREP software toolbox [19], in addition
to eGeMAPS. Different configurations of long short-term
memory (LSTM) networks were used in all of these works
except Zhang et al. [38], who adopted random forest and
logistic regression. Acoustic models proposed by [5] and [38]
achieved lowest RMSE of 5.11 and 6.78 on the development
and test partitions, respectively.

III. MATERIALS AND METHODS

A. Dataset

We use DEPression and Anxiety Crowdsourced corpus
(DEPAC) [39] in this experiment. The dataset consists of
2,674 audio samples collected from 571 subjects located in
Canada and the United States. 54.67% of the study subjects
are female and 45.33% are male, aged between 18 and 76
years, and they received 1 to 26 years of formal education.
The data was collected via crowdsourcing and consists of
a variety of self-administered speech tasks (Table I). The
participants completed these tasks using Amazon Mechanical
Turk (mTurk) 1. The speech tasks were curated to increase
phonemic variety and were supported by literature on detecting
mental disorders, such as Alzheimer’s Disease (AD) [40] and
depression [41], [42], [43] from speech.

In this dataset, the depression severity is represented by
Patient Health Questionnaire (PHQ-9) scores. It is a 3-point
self-rated measure for depressive symptoms, including 9 ques-
tions. To ensure comparability of our results with works done
on popular subsets of DAIC-WoZ corpus [10], i.e. AVEC
2017 [12] and AVEC 2019 [13], we used responses to 8 PHQ
questions in our analysis and reported our results on PHQ-8
scores. The score ranges from 0 to 24 on PHQ-8 scale where
a score higher than 5, 9 and 14 represent mild, moderate and
severe level of depression respectively. The mean PHQ-8 score
of DEPAC corpus (M) is 6.56 with standard deviation (SD) of
5.56.

1https://www.mturk.com

TABLE I: Speech tasks in DEPAC corpus

Speech
Task

Description Average
Duration

Phoneme
Task

Record “aah” sound for as long as the
participant could hold breath

5.79 sec

Phonemic
Fluency

Pronounce as many unique words as
possible starting with the letters “F”,
“A” or “S”

22.13 sec

Picture De-
scription

Describe a picture shown on the screen 46.60 sec

Semantic
Fluency

Describe a positive experience they
expected to have within five years in
future

43.76 sec

Prompted
Narrative

Tell a personal story, describing the
day, a hobby, or a travel experience

45.34 sec

B. Audio Quality Enhancement

To suppress possible background noise present in the sam-
ples and improve quality of the audio, we applied logmmse
enhancement technique [44] on the audio samples. This
method was found the best among existing audio enhancement
algorithms [45]. The enhancement step is found statistically
significant (p ≤ 0.005) on 94% of the 220 conventional
acoustic features in Wilcoxon signed-rank test with Bonferroni
correction.

Audio volume was normalized to -20 dBFS across all
speech segments to control for variation caused by recording
conditions such as microphone placement.

C. Acoustic Features

We extracted two sets of acoustic features, representing
hand-crafted sets of conventional features and deep learning
features:

1) Conventional acoustic features: This set included 220
acoustic features, extracted from each audio sample. The
feature set includes:

• Spectral features: Intensity (auditory model based),
MFCC 0-12, Zero-Crossing Rate (ZCR)

• Voicing-related features: Fundamental frequency (F0),
Harmonic-to-Noise Ratio (HNR), shimmer and jitter,
durational features, pauses and fillers, phonation rate

Statistical functionals including minimum, maximum, average,
and variance were computed on the low-level descriptors. Ad-
ditionally, skewness and kurtosis were calculated on MFCCs,
first and second order derivatives of MFCCs, and Zero Cross-
ing Rate (ZCR) [46].

A Python implementation of Praat phonetic analysis toolkit
[47] has been used to extract the majority of these features.
The MFCC features and their functionals were computed using
python_speech_features2 library.

2) Deep Representation Features: Deep representation of
acoustic features are inspired by the deep learning paradigms
common in image processing. Here, spectral images of speech
instances are fed into pre-trained image recognition CNNs
and a set of the resulting activations are extracted as feature

2https://pypi.org/project/python speech features/
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vectors. VGG-16 is a type of Convolutional Neural Network
(CNN) which is considered to be one of the best computer
vision models to date. We used DeepSpectrum library [48] to
extract features from a pre-trained VGG-16 CNN [22]. The
speech files are first transformed into mel-spectrogram images
with 128 mel-frequency bands. Then, the spectral images
are forwarded through the pre-trained networks. A 4,096-
dimensional feature vector is then formed from the activations
of the second fully connected layer in VGG-16. The features
were extracted at a window width of 1s and a hop size of 300
ms from each audio sample.

D. Data Preprocessing

1) Standardization : The range of values of audio features
tends to vary widely. To ensure even contribution of all
features in the regression task, and to speed up gradient descent
convergence of the deep neural network, once acoustic features
were extracted from the audio samples, we standardized them
using z-scores, i.e., subtracting the mean and dividing by
standard deviation. The standard score of a sample x of feature
fi is calculated as:

y =
x− µ

σ
(1)

here µ and σ are the mean and standard deviation of the values
of fi in all training samples.

2) Feature Selection: We applied minimum Redundancy-
Maximum Relevance (mRMR) algorithm [49] to select the
most relevant features with respect to the PHQ scores, mini-
mizing redundancy in the selected set of features. 10% features
were selected from each set for training the ML models.

E. Model Training

Following [7] and [4], we train a combination of linear and
non-linear ML models separately on conventional and deep
learning acoustic features:

• Support Vector Machines (SVM): Radial Basis Function
(RBF) kernel SVM was trained. Values of hyperparam-
eters ‘C’ and ‘gamma’ were tuned by 5-fold grid-search
cross validation (cv).

• Random Forest (RF): Scikit Learn implementation of
random forest regressor was used. Number of estimator
trees and maximum depth were tuned through grid-search
cv.

• Feedforward Neural Network (FNN): The FNN model
consists of 4 hidden layers, with 500 hidden units on the
first layer, 250 in the second and 125 in the rest of the
hidden layers. 30% dropout on the output of each of the
hidden layers of the FNN. We use Adam optimizer in all
FNN models with the learning rate of 0.001. Each of the
FNN models is trained for 150 epochs.

The discussion presented by [7] suggest that for small audio
corpus like the ADReSSo challenge dataset (237 samples)
[50], either leave-one-subject-out cross validation or k-fold
cross validation can be applied. However, the dataset used is
this work is considerably larger than the ADReSSo challenge
dataset. Considering the size of the dataset and corresponding

computational complexity, we decided to report evaluation
metrics with 5-fold cross-validation (CV) for the models. We
create 5 subject-independent folds, train the model using 4
of them, and use the rest for testing. We repeat the process
for all 5 folds and report evaluation metrics averaging across
predictions on all the folds. These folds preserve the same ratio
of depression severity in each training and test partitions.

To understand the effect of speech content on ML models’
performance, we separated samples with each type of speech
task and trained models on each type of them. We repeated
the same process for conventional and VGG-16 features.

We ran our experiment on a MacBook Pro with Intel Core
i7 CPU at clock speed of 2.67 GHz. The system availed 16
GB memory. The data preprocessing and model training was
done in Python programming language.
TABLE II: Regression error of models trained on conventional
and VGG-16 features

Algorithm Gender
RMSE MAE

Conventional VGG-16 Conventional VGG-16

SVM
Male 5.04 7.89 4.22 6.95
Female 5.64 7.11 4.33 6.23
Overall 5.38 7.48 4.28 6.56

RF
Male 5.15 5.06 4.37 4.27
Female 5.47 5.51 4.34 4.32
Overall 5.32 5.31 4.31 4.33

FNN
Male 5.10 5.19 4.45 4.30
Female 5.54 5.67 4.51 4.34
Overall 5.35 5.46 4.40 4.32

IV. RESULT AND DISCUSSION

Here we present the performance of the ML models trained
on DEPAC dataset with a view to find answers to the research
questions (RQs), outlined in Section I.

A. Effectiveness of different types of acoustic features in
measuring depression

We trained 3 different ML models on each type of acoustic
feature, i.e. conventional and VGG-16. We report the RMSE
and MAE error of each model trained separately on samples
from male and female subjects, along with the overall per-
formance on the entire dataset (Table II). We compare the
performance of our best model with the state-of-the-art (Table
III). We report CPU time required to train each model to assist
future researchers and system designers in making informed
choice of feature type and ML model.

1) Performance of models trained on conventional and deep
representation features: SVM and FNN models performed
better on conventional features than on VGG-16, while per-
formance of RF is marginally better (0.0004%) on VGG-16
(Table II). These findings are consistent with the previous
works presented in Table III. Conventional features presented
in [34] modeled depression marginally better than models with
deep representation features [23], [32].

In comparison to the state of the art acoustic models, our
proposed RF models show competitive performance. The RF
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(a) SVM (CCC = 0.000) (b) RF (CCC = 0.003) (c) FNN (CCC = -0.002)

Fig. 1: Correlation between speech length and prediction error of models trained on conventional acoustic features

(a) SVM (CCC = -0.004) (b) RF (CCC = -0.006) (c) FNN (CCC = -0.010)

Fig. 2: Correlation between speech length and prediction error of models trained on VGG-16 features

(a) SVM (CCC = 0.055) (b) RF (CCC = 0.385) (c) FNN (CCC = 0.435)

Fig. 3: Correlation between depression severity and prediction error of models trained on conventional acoustic features

model trained on both types of features outperforms almost all
the existing works reporting similar performance metrics on
PHQ-8 scale (see Table III). Only [5] reported lower RMSE
than us, fusing all four sets of AVEC 2019 baseline features,
which is a combination of conventional (MFCC, Bag-of-
Audio Words, eGeMAPS) and deep representation (VGG-16)
features, and formulating a multi-level LSTM architecture. Our
proposed RF model trained on conventional features produces
competitive performance to their proposed model, while sub-
stantially decreasing computational requirements. The VGG-
16 features collected in the same manner as described by [5]
from our audio corpus occupy 11.21 GB of memory, while
our presented conventional feature file size is only 11 MB.
Preprocessing and training models on conventional acoustic
features took on average 3 minutes, while the procedure on
VGG-16 features took at least 150 hours on the same compu-
tational environment (2.6 GHz 6 core Intel Core i7 processor,

16 GB memory). In short, our RF model using VGG-16
features offers 0.0004% improvement in performance than the
same model using conventional features, using 1000 times
more memory and 3000 times more processing time, implying
similar or more computational resource is required for training
complex models on multimodal features for marginal per-
formance improvement. Therefore, the conventional features
provided better opportunity to adjust model parameters for
performance improvement.

Results (Table III) demonstrate that, in most cases, RMSE
and MAE are lower for male subjects than female subjects.
The reason behind this can be the lower severity of depression
among male subjects than females in DEPAC dataset [39]. The
skewness in the dataset causes bias in model prediction, as
described in [52]. For real world applications, this issue needs
to be taken care of by ensuring gender balance in training data.
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(a) SVM (CCC = -0.726) (b) RF (CCC = 0.445) (c) FNN (CCC = 0.394)

Fig. 4: Correlation between depression severity and prediction error of models trained on VGG-16 features

TABLE III: Comparison of performance of SOTA ML models
trained on different combinations of features. Bold denotes
regression error of our proposed model.

Feature
Type

Study RMSE MAE

Conventional

Formants, MFCCs, glottal fea-
tures, loudness, AVEC 2017
dataset [51]

6.38 5.32

COVAREP feature set, AVEC
2017 dataset [36]

6.34 5.30

COVAREP features and func-
tional, AVEC 2016 dataset)

6.50 5.13 [30]

MFCC, AVEC 2016 dataset
[31]

5.78 -

MFCC and eGeMAPS fea-
tures, AVEC 2019 dataset [37]

6.20 -

eGeMAPS, INTERSPEECH
features, AVEC 2016 dataset
[34]

5.52 4.63

eGeMAPS and COVAREP fea-
tures, AVEC 2019 dataset [38]

6.78 5.77

Deep
representation

VGG-16 features, AVEC 2019
dataset [23]

5.70 -

Mel-spectra, AVEC 2017
dataset [32]

5.66 4.28

Conventional
+ deep
combined

MFCC, BoAW, eGeMAPS and
VGG-16 features, AVEC 2019
dataset [5]

5.11 -

Conventional MFCCs, HNR, jitter, shimmer,
ZCR features, DEPAC dataset
[39]

5.31 4.33

2) Significance of performance deviation of models trained
on conventional and deep representation features: We per-
formed two-sample t-tests to identify if the performance
deviations of the models are significant when trained on
conventional acoustic features and VGG-16 features.

There was a significant difference between absolute errors in
predictions of SVM models trained on WLL acoustic features
(M = 4.28, SD = 3.25) and VGG-16 features (M =
6.5, SD = 3.59); t(5332) = −24.20, p = 6.86e − 123 < .05.
The absolute errors in predictions of SVM with model is
significantly higher when trained on VGG-16 features than
when trained on conventional features.

On the other hand, there was no significant difference

TABLE IV: Time elapsed in different stages of model training

Processing
step

Algorithm Conventional VGG-16

Data loading - 1.132 244450

Preprocessing - 96.834 545483

Model training
SVM 1.600 5593
RF 0.715 981
FNN 220.853 10270

Prediction
SVM 0.412 53
RF 0.040 9
FNN 1.102 7

Total
SVM 99.978 795579
RF 98.715 790923
FNN 267.227 800210

between absolute errors in predictions of our best perform-
ing RF and FNN models trained on conventional acoustic
features (RF : M = 4.34, SD = 3.09;FNN : M =
4.32, SD = 3.14) and VGG-16 features (RF : M =
4.31, SD = 3.11;FNN : M = 4.48, SD = 3.11). The test
scores of RF (t(5332) = 0.38, p = .70 > .05) and FNN
(t(5332) = −1.81, p = .07 > .05) indicate that the deviation
of errors in prediction of the models are not significantly
different irrespective of training features.

B. Effect of speech task type on ML model performance

The results (Table V) do not reflect any significant deviation
of model performance on the basis of speech task, therefore it
is possible to recommend as a design choice any speech task
of a similar length and content.

C. Correlation between model performance and speech length

From Figure 1 and 2 one can see that no significant
correlation is observed between model performance (absolute
error of each prediction) and length of corresponding sample.
The Concordance Correlation Coefficient (CCC) score for
SVM, RF and FNN models are 0.000, 0.003 and -0.002 for
conventional features and -0.004, -0.006 and -0.010 for VGG-
16 features respectively. The near-zero CCC values indicate
that in the case of our dataset, the speech length of samples
does not influence the models’ performance. Note that all
speech samples in DEPAC are less than one minute.
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TABLE V: Regression error of models trained on speech
samples of different tasks

Algorithm Speech task
RMSE MAE

Conventional VGG-16 Conventional VGG-16

SVM

Semantic flu-
ency

5.30 6.62 4.21 5.77

Prompted
narrative

5.29 6.63 4.24 5.77

Phoneme
task

5.49 6.40 4.33 5.54

Phonemic
fluency

5.45 6.49 4.35 5.62

Picture
description

5.43 6.54 4.36 5.67

RF

Semantic flu-
ency

5.24 5.24 4.25 4.24

Prompted
narrative

5.31 5.25 4.30 4.25

Phoneme
task

5.39 5.29 4.37 4.30

Phonemic
fluency

5.38 5.29 4.38 4.30

Picture
description

5.42 5.31 4.40 4.31

FNN

Semantic flu-
ency

5.34 7.13 4.28 5.34

Prompted
narrative

5.30 7.13 4.30 5.35

Phoneme
task

5.49 7.33 4.39 5.50

Phonemic
fluency

5.39 7.30 4.33 5.47

Picture
description

5.45 7.29 4.45 5.47

D. Correlation between depression severity and model perfor-
mance

Absolute errors for each sample are plotted against ground
truth PHQ-8 score for the models trained on conventional
and VGG-16 features in Figure 3 and 4. The CCC score for
SVM, RF and FNN models are 0.055, 0.385 and 0.435 for
conventional features and -0.726, 0.445 and 0.394 for VGG-16
features respectively. The plots, along with high positive CCC
scores for most of the models, imply that the samples with
higher PHQ-8 scores contribute more to the overall prediction
error of the models. This is caused by the imbalance in the
number of samples with high and low PHQ-8 scores in DEPAC
dataset [39]. The higher density of samples with subthreshold
(≤ 5) PHQ-8 score bias the models to make predictions close
to the mean PHQ-8 (6.56) of the dataset. This observation
strengthens the necessity of balancing the samples in training
models to be used in real world application.

V. CONCLUSION AND FUTURE WORKS

Speech has proven to be a reliable marker for depression
assessment. But in order to deploy a machine learning model
in a practical system, it is necessary to identify the most
informative acoustic feature, along with an efficient and cost-
effective process to train the model. In this paper, we study

the performance of conventional acoustic feature-based and
pre-trained deep representation based models on predicting
depression severity from speech. We observe that the hand-
curated feature based approach achieves better performance
in terms of lower RMSE and MAE, at a remarkably less
computation time. Our experiments show that gender of the
speaker and distribution of score affect the model performance,
and should be taken care of while formulating balanced
training data. We also report that content and length of speech
do not show significant impact as long as the length of speech
samples is reasonably short, less than one minute in our
case. To summarize, we suggest using ML models trained on
conventional features in resource-limited real-time situations
and deep models in scenarios where fine-grained analysis
involving higher computational power is crucial. In our future
work, we plan to explore generalizability of the findings across
other datasets and disorders.

REFERENCES

[1] “Depression,” 2020, https://www.who.int/news-room/fact-sheets/detail/
depression.

[2] R. Wang, F. Chen, Z. Chen, T. Li, G. Harari, S. Tignor, X. Zhou,
D. Ben-Zeev, and A. T. Campbell, “Studentlife: assessing mental health,
academic performance and behavioral trends of college students using
smartphones,” in Proceedings of the 2014 ACM International Joint
Conference on Pervasive and Ubiquitous Computing. ACM, 2014,
pp. 3–14.

[3] X. Ma, H. Yang, Q. Chen, D. Huang, and Y. Wang, “Depaudionet:
An efficient deep model for audio based depression classification,” in
Proceedings of the 6th international workshop on audio/visual emotion
challenge, 2016, pp. 35–42.

[4] M. Tasnim and E. Stroulia, “Detecting depression from voice,” in
Canadian Conference on Artificial Intelligence. Springer, 2019, pp.
472–478.

[5] A. Ray, S. Kumar, R. Reddy, P. Mukherjee, and R. Garg, “Multi-
level attention network using text, audio and video for depression
prediction,” in Proceedings of the 9th international on audio/visual
emotion challenge and workshop, 2019, pp. 81–88.

[6] B. Yalamanchili, N. S. Kota, M. S. Abbaraju, V. S. S. Nadella, and S. V.
Alluri, “Real-time acoustic based depression detection using machine
learning techniques,” in 2020 International conference on emerging
trends in information technology and engineering (ic-ETITE). IEEE,
2020, pp. 1–6.

[7] A. Balagopalan and J. Novikova, “Comparing Acoustic-Based Ap-
proaches for Alzheimer’s Disease Detection,” in Proc. Interspeech 2021,
2021, pp. 3800–3804.

[8] J. K. Darby, N. Simmons, and P. A. Berger, “Speech and voice
parameters of depression: A pilot study,” Journal of Communication
Disorders, vol. 17, no. 2, pp. 75–85, 1984.

[9] N. Cummins, V. Sethu, J. Epps, and J. Krajewski, “Probabilistic acoustic
volume analysis for speech affected by depression,” in Fifteenth Annual
Conference of the International Speech Communication Association,
2014.

[10] J. Gratch, R. Artstein, G. Lucas, G. Stratou, S. Scherer, A. Nazarian,
R. Wood, J. Boberg, D. DeVault, S. Marsella et al., “The distress analysis
interview corpus of human and computer interviews,” in Proceedings
of the Ninth International Conference on Language Resources and
Evaluation (LREC’14), 2014, pp. 3123–3128.

[11] M. Valstar, J. Gratch, B. Schuller, F. Ringeval, D. Lalanne, M. Tor-
res Torres, S. Scherer, G. Stratou, R. Cowie, and M. Pantic, “Avec 2016:
Depression, mood, and emotion recognition workshop and challenge,” in
Proceedings of the 6th international workshop on audio/visual emotion
challenge, 2016, pp. 3–10.

[12] F. Ringeval, B. Schuller, M. Valstar, J. Gratch, R. Cowie, S. Scherer,
S. Mozgai, N. Cummins, M. Schmitt, and M. Pantic, “Avec 2017:
Real-life depression, and affect recognition workshop and challenge,”
in Proceedings of the 7th Annual Workshop on Audio/Visual Emotion
Challenge, 2017, pp. 3–9.

1693

https://www.who.int/news-room/fact-sheets/detail/depression
https://www.who.int/news-room/fact-sheets/detail/depression


[13] F. Ringeval, B. Schuller, M. Valstar, N. Cummins, R. Cowie, L. Tavabi,
M. Schmitt, S. Alisamir, S. Amiriparian, E.-M. Messner et al., “Avec
2019 workshop and challenge: state-of-mind, detecting depression with
ai, and cross-cultural affect recognition,” in Proceedings of the 9th
International on Audio/Visual Emotion Challenge and Workshop, 2019,
pp. 3–12.

[14] K. Kroenke, R. L. Spitzer, and J. B. Williams, “The phq-9: validity of a
brief depression severity measure,” Journal of general internal medicine,
vol. 16, no. 9, pp. 606–613, 2001.

[15] M. Valstar, B. Schuller, K. Smith, F. Eyben, B. Jiang, S. Bilakhia,
S. Schnieder, R. Cowie, and M. Pantic, “Avec 2013: the continuous
audio/visual emotion and depression recognition challenge,” in Proceed-
ings of the 3rd ACM international workshop on Audio/visual emotion
challenge, 2013, pp. 3–10.

[16] B. Schuller, S. Steidl, A. Batliner, A. Vinciarelli, K. Scherer, F. Ringeval,
M. Chetouani, F. Weninger, F. Eyben, E. Marchi et al., “The interspeech
2013 computational paralinguistics challenge: Social signals, conflict,
emotion, autism,” in Proceedings INTERSPEECH 2013, 14th Annual
Conference of the International Speech Communication Association,
Lyon, France, 2013.

[17] F. Eyben, Real-time speech and music classification by large audio
feature space extraction. Springer, 2015.
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