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Table 1: Performance of the models predicting 
CDR-SB change from baseline to month 18 
using 5-fold cross-validation on the train set

Background

The potential applicability of speech-related 
biomarkers for Alzheimer’s disease (AD) in 
prognosis of longitudinal outcomes is largely 
unknown. Most research is focused on 
diagnostic classification models1,2 or 
predicting Mini-Mental State Examination 
(MMSE) scores3. We developed two 
predictive models of clinical progression in 
prodromal-to-mild  AD [measured by the 
Clinical Dementia Rating-Sum of Boxes 
(CDR-SB)4] that use a combination of several 
linguistic and acoustic speech features.

Methods

● Speech and CDR-SB data from a subset of 54 
participants with prodromal-to-mild AD from the 
Tauriel study5 of the anti-tau antibody 
semorinemab (NCT03289143) were analyzed.

● Data were obtained at five different visits 
(screening, baseline, months 6, 12, and 18) 
and pooled across semorinemab and placebo 
arms given the similar rates of clinical 
progression. 

● Using the Winterlight speech processing 
pipeline, 520 acoustic and linguistic features 
were extracted from the CDR speech 
recordings and subsets of cross-sectional, and 
prognostic features were identified:
○ Cross-sectional features: 17 speech features 

with the strongest Pearson correlations with 
CDR-SB scores at baseline (r>0.3, 
FDR-corrected p<0.05). 

○ Prognostic features: 19 speech features with 
significant correlations (p<0.05, uncorrected) 
with changes in CDR-SB scores from 
baseline to month 18.

● Using these subsets of speech features from 
screening to month 12, two machine learning 
models were trained for predicting the change 
in CDR-SB scores from baseline to month 18: 

1) Mixed Effects Random Forest (MERF)6

2) Long Short-Term Memory (LSTM)7

● The performance of the models were evaluated 
based on mean absolute error (MAE), and root 
mean-squared error (RMSE) for both 5-fold 
cross-validation and held-out test sets.
Note! To investigate the strength of our models, 
the performance of no change baseline model 
was reported that always predicts 0 changes in 
scores from baseline to month 18 sessions.

Results

Presented at Applications of Medical AI (AMAI), 2022

Conclusion

● We developed several longitudinal models 
for predicting clinical progression in AD 
using speech features. 

● Our results suggest that the nonlinear 
mixed effect model is efficacious in 
longitudinal monitoring of AD.

● Our results also signify that cross-sectional 
speech features, which are significantly 
correlated with CDR-SB scores at baseline 
assessment, can be used as effective 
predictors of cognitive decline across 18 
months of follow-up.
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Figure 2: True vs. predicted CDR-SB change in 
MERF with cross-sectional features. 

Predictive Model MAE RMSE

No change baseline 2.19±0.000 2.77±0.000

MERF with prognostic 1.62±0.038 2.06±0.031

MERF with 
cross-sectional 1.48±0.040 1.95±0.059

LSTM with prognostic 1.59±0.076 2.10±0.083

LSTM with 
cross-sectional 1.62±0.059 2.18±0.074

Predictive Model MAE RMSE

No change baseline 2.59 3.50

MERF with cross-sectional 2.10 2.80

LSTM with cross-sectional 2.67 3.26

● With either feature subset, MERF and 
LSTM models achieved less than 2.7 
points of MAE for absolute change in 
CDR-SB scores (range: 0-18; Table 1 
and 2).

● The best-performing MERF model 
outperformed the LSTM and no change 
baseline models on both train and 
held-out test sets when using 
cross-sectional features. 

● MERF with cross-sectional features 
performed better compared to the 
prognostic features on both training 
and test data sets.
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Table 2: Performance of the models predicting 
CDR-SB change from baseline to month 18 on 
the held-out test set

Figure 1: Winterlight Speech Analysis Pipeline  


