Benchmarking Prognostic Longitudinal Machine Learning Models of Alzheimer's Disease Using Speech Features WINTERLIGHT

Malikeh Ehghaghi¹, Jekaterina Novikova², Arindam Sett³, Mohsen Hejrati⁴, Jessica Robin⁵, Edmond Teng⁶, Somaye Hashemifar⁷ ^{1,2,5} Winterlight Labs Inc., Toronto, Canada ^{3,4,6,7}Genentech Inc., South San Francisco, CA, United States

{malikeh¹, jekaterina², jessica⁵}@winterlightlabs.com {setta³, hejratis⁴, tenge1⁶, hashems4⁷}@gene.com

Background	Results	Table 2: Performance of th CDR-SB change from base the held-out test set	e models eline to mo	predicting onth 18 on
The potential applicability of speech-related	 With either feature subset, MERF and 			
biomarkers for Alzheimer's disease (AD) in prognosis of longitudinal outcomes is largely	LSTM models achieved less than 2.7 points of MAE for absolute change in	Predictive Model	MAE	RMSE
unknown. Most research is focused on	CDR-SB scores (range: 0-18; Table 1 and 2).	No change baseline	2.59	3.50
predicting Mini-Mental State Examination	 The best-performing MERF model outperformed the LSTM and no change 	MERF with cross-sectional	2.10	2.80
(MMSE) scores ³ . We developed two	baseline models on both train and	LSTM with cross-sectional	2.67	3.26

predictive models of clinical progression in AD [measured by prodromal-to-mild the Clinical Dementia Rating-Sum of Boxes (CDR-SB)⁴] that use a combination of several linguistic and acoustic speech features.

Methods

- Speech and CDR-SB data from a subset of 54 participants with prodromal-to-mild AD from the Tauriel study⁵ of the anti-tau antibody semorinemab (NCT03289143) were analyzed.
- Data were obtained at five different visits (screening, baseline, months 6, 12, and 18) and pooled across semorinemab and placebo arms given the similar rates of clinical progression.
- Winterlight speech Using the processing pipeline, 520 acoustic and linguistic features

held-out when using test sets cross-sectional features.

• MERF with cross-sectional features better compared performed to the prognostic features on both training and test data sets.

Figure 2: True vs. predicted CDR-SB change in **MERF** with cross-sectional features.

Conclusion

- We developed several longitudinal models for predicting clinical progression in AD using speech features.
- Our results suggest that the nonlinear mixed effect model is efficacious in longitudinal monitoring of AD.
- Our results also signify that cross-sectional speech features, which are significantly correlated with CDR-SB scores at baseline assessment, can be used as effective predictors of cognitive decline across 18 months of follow-up.

References

CDR extracted from the speech were recordings and subsets of cross-sectional, and prognostic features were identified:

- Cross-sectional features: 17 speech features with the strongest Pearson correlations with CDR-SB scores at baseline (r>0.3, FDR-corrected p<0.05).
- Prognostic features: 19 speech features with significant correlations (p<0.05, uncorrected) with changes in CDR-SB scores from baseline to month 18.
- Using these subsets of speech features from screening to month 12, two machine learning models were trained for predicting the change in CDR-SB scores from baseline to month 18: 1) Mixed Effects Random Forest (MERF)⁶ 2) Long Short-Term Memory (LSTM)⁷
- The performance of the models were evaluated based on mean absolute error (MAE), and root mean-squared error (RMSE) for both 5-fold cross-validation and held-out test sets.

Table 1: Performance of the models predicting CDR-SB change from baseline to month 18 using 5-fold cross-validation on the train set

Predictive Model	MAE	RMSE
No change baseline	2.19±0.000	2.77±0.000
MERF with prognostic	1.62±0.038	2.06±0.031
MERF with cross-sectional	1.48±0.040	1.95±0.059
LSTM with prognostic	1.59±0.076	2.10±0.083
LSTM with cross-sectional	1.62±0.059	2.18±0.074

- (1) Luz, S., Haider, F., de la Fuente, S., Fromm, D., & MacWhinney, B. (2020). Alzheimer's dementia recognition through spontaneous speech: the ADReSS challenge. arXiv preprint arXiv:2004.06833.
- (2) Luz, S., Haider, F., de la Fuente, S., Fromm, D., & MacWhinney, B. (2021). Detecting cognitive decline using speech only: The Challenge. ADReSSo arXiv preprint arXiv:2104.09356.
- (3) Yancheva, M., Fraser, K. C., & Rudzicz, F. (2015, September). Using linguistic features longitudinally to predict clinical scores for Alzheimer's disease and related dementias. In Proceedings of SLPAT 2015: 6th Workshop on Speech and Language Processing for Assistive Technologies (pp. 134-139). (4) O'Bryant, S. E., Waring, S. C., Cullum, C. M., Hall, J., Lacritz, L., Massman, P. J., ... & Texas Alzheimer's Research Consortium. (2008). Staging dementia using Clinical
 - Dementia Rating Scale Sum of Boxes scores: Texas Alzheimer's research consortium study. Archives of neurology, 65(8),

Note! To investigate the strength of our models, the performance of no change baseline model was reported that always predicts 0 changes in scores from baseline to month 18 sessions.

Figure 1: Winterlight Speech Analysis Pipeline

1091-1095.

(5) Teng, E., Manser, P. T., Pickthorn, K., Brunstein, F., Blendstrup, M., Bohorquez, S. S., ... & Tauriel Investigators. (2022). Safety and efficacy of semorinemab in individuals with prodromal to mild Alzheimer disease: a randomized clinical trial. JAMA neurology, 79(8), 758-767.

(6) Hajjem, A., Bellavance, F., & Larocque, D. (2014). Mixed-effects random forest for clustered Journal data. Statistical of Simulation, Computation 84(6), and 1313-1328.

(7) Graves, A. (2012). Long short-term memory. Supervised sequence labelling with recurrent neural networks, 37-45.

Presented at Applications of Medical AI (AMAI), 2022